Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation.

نویسندگان

  • Daniel J Trombly
  • Teresa K Woodruff
  • Kelly E Mayo
چکیده

Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes place when germ cell syncytia within the ovary break down and germ cells are encapsulated by pregranulosa cells. In the mouse, this occurs during the first 4-5 d of postnatal life. The expression of Notch family genes in the neonatal mouse ovary was determined through RT-PCR measurements. Jagged1, Notch2, and Hes1 transcripts were the most abundantly expressed ligand, receptor, and target gene, respectively. Jagged1 and Hey2 mRNAs were up-regulated over the period of follicle formation. Localization studies demonstrated that JAGGED1 is expressed in germ cells prior to follicle assembly and in the oocytes of primordial follicles. Pregranulosa cells that surround germ cell nests express HES1. In addition, pregranulosa cells of primordial follicles expressed NOTCH2 and Hey2 mRNA. We used an ex vivo ovary culture system to assess the requirement for Notch signaling during early follicle development. Newborn ovaries cultured in the presence of gamma-secretase inhibitors, compounds that attenuate Notch signaling, had a marked reduction in primordial follicles compared with vehicle-treated ovaries, and there was a corresponding increase in germ cells that remained within nests. These data support a functional role for Notch signaling in regulating primordial follicle formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P4 down-regulates Jagged2 and Notch1 expression during primordial folliculogenesis.

Nest breakdown and primordial folliculogenesis of the mouse ovary can be inhibited by progesterone (P4) and Notch signaling inhibitors. However, the relationship between these two signals during this process remains unknown. In the present study, transcript levels of Jagged2, Notch1, and their target, Hey2, increased markedly in ovaries during the beginning stage of folliculogenesis (17.5 days ...

متن کامل

JAK signaling regulates germline cyst breakdown and primordial follicle formation in mice

In female mammals, primordial follicles consist of two types of cells, namely, oocytes and pregranulosa cells that surround the oocytes. The size of the primordial follicle pool determines the reproductive ability of female mammals. However, the underlying mechanisms controlling primordial follicle assembly remain unclear. In this study, we show that oocyte-derived Janus kinase (JAK) signaling ...

متن کامل

Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary

In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mic...

متن کامل

Notch signaling regulates ovarian follicle formation and coordinates follicular growth.

Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstr...

متن کامل

ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice.

Ovarian follicles are the basic functional units of female reproduction in the mammalian ovary. We show here that the protein a disintegrin and metalloproteinase domain 10 (ADAM10), a cell surface sheddase, plays an indispensable role in controlling primordial follicle formation by regulating the recruitment of follicle supporting cells in mice. We demonstrate that suppressing ADAM10 in vitro o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 150 2  شماره 

صفحات  -

تاریخ انتشار 2009